If it's not what You are looking for type in the equation solver your own equation and let us solve it.
a^2+2.6^2=3.9^2
We move all terms to the left:
a^2+2.6^2-(3.9^2)=0
We add all the numbers together, and all the variables
a^2-8.45=0
a = 1; b = 0; c = -8.45;
Δ = b2-4ac
Δ = 02-4·1·(-8.45)
Δ = 33.8
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-\sqrt{33.8}}{2*1}=\frac{0-\sqrt{33.8}}{2} =-\frac{\sqrt{}}{2} $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+\sqrt{33.8}}{2*1}=\frac{0+\sqrt{33.8}}{2} =\frac{\sqrt{}}{2} $
| 8n=(8)^2 | | a^2+8^2=9^2 | | 2^2+b^2=3^2 | | 2(x-3)^2=2(x^2+9) | | -16=-n/19 | | 3(x+6)=2(2x-6) | | t/3-4=21 | | 7x+12+8x+18=90 | | x+6.1=12.2 | | 8n=(6+2)^2 | | 5(2x}x=3 | | 3(-2x-6)+2(3x+5)-9x=11-5x+2(7-3x)-1 | | -1/8=g-42/5 | | 2xx=40 | | 8n=2(3+1)^2 | | 15=x-18;x= | | 7.6^2+b^2=9.2^2 | | 7n=27-6 | | 15=x-18;x | | 3(-2x-6)+2(3x+5)-9x=11-5x+3(7-3x)-1 | | a^2+5^2=9^2 | | 36x^2-60x=0 | | 2x+24=x+5 | | 12n=62 | | 2(-11x+7)=11x-19 | | 3n=40-10 | | 5u^2+9u=0 | | a^2+20^2=25^2 | | 6n=6+18 | | 5x-4x+8=8-3x | | -5-3x=1x-3 | | 4x+3=17. |